Distributed Control of Inverter-Based Power Grids

John W. Simpson-Porco

ESIF Workshop: Frontiers in Distributed Optimization & Control of Sustainable Power Systems

Co-Authors: Florian Dörfler (ETH) and Francesco Bullo (UCSB)

January 26th, 2016

- **Electricity** is the foundation of technological civilization
- Hierarchical grid: generate/transmit/consume
- Challenges: multi-scale, need reliability + performance

- Electricity is the foundation of technological civilization
- Hierarchical grid: generate/transmit/consume
- Challenges: multi-scale, need reliability + performance

- Electricity is the foundation of technological civilization
- Hierarchical grid: generate/transmit/consume
- Challenges: multi-scale, need reliability + performance

- Electricity is the foundation of technological civilization
- Hierarchical grid: generate/transmit/consume
- Challenges: multi-scale, need reliability + performance

What are the control strategies?

Hierarchy by spatial/temporal scales and physics

- Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. **Secondary control** (minutes)
 - Goal: restore frequency
 - Strategy: centralized
- 1. **Primary control** (real-time)
 - Goal: stabilize freq. and volt.
 - Strategy: decentralized

Q: Is this hierarchical architecture still appropriate for new applications?

Hierarchy by spatial/temporal scales and physics

- Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. Secondary control (minutes)
 - Goal: restore frequency
 - Strategy: centralized
- 1. Primary control (real-time)
 - Goal: stabilize freq. and volt.
 - Strategy: decentralized

Q: Is this hierarchical architecture still appropriate for new applications?

Hierarchy by spatial/temporal scales and physics

- 3. Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. **Secondary control** (minutes)
 - Goal: restore frequency
 - Strategy: centralized
- 1. Primary control (real-time)
 - Goal: stabilize freq. and volt.
 - Strategy: decentralized

Q: Is this hierarchical architecture still appropriate for new applications?

Hierarchy by spatial/temporal scales and physics

- 3. **Tertiary control** (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. Secondary control (minutes)
 - Goal: restore frequency
 - Strategy: centralized
- 1. **Primary control** (real-time)
 - Goal: stabilize freq. and volt.
 - Strategy: decentralized

Q: Is this hierarchical architecture still appropriate for new applications?

Two Major Trends

(New York Magazine)

Trend 1: Physical Volatility

- bulk distributed generation, regulation (33 by 2020 in CA, GEA in ON)
- growing demand & old infrastructure

lowered inertia & robustness margins

Trend 2: Technological Advances

- sensors, actuators & grid-edge resources (PMUs, FACTS, flexible loads)
- 2 control of cyber-physical systems
- \Rightarrow cyber-coordination layer for smart grid

Two Major Trends

(New York Magazine)

Trend 1: Physical Volatility

- bulk distributed generation, regulation (33 by 2020 in CA, GEA in ON)
- growing demand & old infrastructure
 - lowered inertia & robustness margins

Trend 2: Technological Advances

- sensors, actuators & grid-edge resources (PMUs, FACTS, flexible loads)
- 2 control of cyber-physical systems
- ⇒ cyber-coordination layer for smart grid

(Electronic Component News)

Outline

Introduction & Project Samples

Distributed Control in Microgrids
Primary Control
Tertiary Control
Secondary Control

Relevant Publications

J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Voltage stabilization in microgrids via quadratic droop control. *IEEE Transactions on Automatic Control*, May 2015. Note: Conditionally accepted.

J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Voltage Collapse in Complex Power Grids. February 2015. Note: Accepted.

J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo. Secondary Frequency and Voltage Control in Islanded Microgrids via Distributed Averaging. *IEEE Transactions on Industrial Electronics*, 62(11):7025-7038, 2015.

F. Dörfler, J. W. Simpson-Porco, and F. Bullo. Breaking the Hierarchy: Distributed Control & Economic Optimality in Microgrids. *IEEE Transactions on Control of Network Systems*. Note: To Appear.

J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Synchronization and Power-Sharing for Droop-Controlled Inverters in Islanded Microgrids. *Automatica*, 49(9):2603-2611, 2013.

Research supported by

Project Samples: Voltage Control/Collapse

Quadratic Droop Control (TAC)

Voltage Collapse (Nat. Comms.)

$\textbf{Optimal Distrib. Volt/Var} \ (\texttt{CDC})$

Collapse W.A.M. (TSG)

Outline

Introduction & Project Samples

Distributed Control in Microgrids Primary Control Tertiary Control Secondary Control

Microgrids

Structure

- low-voltage, small footprint
- grid-connected or islanded
- autonomously managed

Applications

 hospitals, military, campuses, large vehicles, & isolated communities

Benefits

- naturally distributed for renewables
- scalable, efficient & redundant

Operational challenges

- low inertia & uncertainty
- plug'n'play & no central authority

Microgrids

Structure

- low-voltage, small footprint
- grid-connected or islanded
- autonomously managed

Applications

 hospitals, military, campuses, large vehicles, & isolated communities

Benefits

- naturally distributed for renewables
- scalable, efficient & redundant

Operational challenges

- low inertia & uncertainty
- plug'n'play & no central authority

- Loads (•) and Inverters (■)
- **Quasi-Synchronous:** $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{i\theta_i}$
- **3** Load Model: Constant powers P_i^* , Q_i^*
- **4 Coupling Laws:** Kirchoff and Ohm: $Y_{ij} = G_{ij} + jB_{ij}$

① Decoupling: $P_i \approx P_i(\theta)$ & $Q_i \approx Q_i(E)$ (normal operating conditions)

- **①** Loads (●) and Inverters (■)
- **Quasi-Synchronous:** $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{i\theta_i}$
- **3** Load Model: Constant powers P_i^* , Q_i^*
- **Quantification** Coupling Laws: Kirchoff and Ohm: $Y_{ij} = G_{ij} + jB_{ij}$

- **1 Line Characteristics:** $G_{ij}/B_{ij} = \text{const.}$ (today, lossless $G_{ij} = 0$)
- **Operating:** $P_i \approx P_i(\theta) \& Q_i \approx Q_i(E)$ (normal operating conditions)
 - active power: $P_i = \sum_j B_{ij} E_i E_j \sin(\theta_i \theta_j) + G_{ij} E_i E_j \cos(\theta_i \theta_j)$
 - reactive power: $Q_i = -\sum_j B_{ij} E_i E_j \cos(\theta_i \theta_j) + G_{ij} E_i E_j \sin(\theta_i \theta_j)$

- **①** Loads (●) and Inverters (■)
- **Quasi-Synchronous:** $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{i\theta_i}$
- **3** Load Model: Constant powers P_i^* , Q_i^*
- **4 Coupling Laws:** Kirchoff and Ohm: $Y_{ij} = G_{ij} + jB_{ij}$

6 Decoupling: $P_i \approx P_i(\theta)$ & $Q_i \approx Q_i(E)$ (normal operating conditions)

- Loads (•) and Inverters (•)
- **Quasi-Synchronous:** $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{i\theta_i}$
- **3** Load Model: Constant powers P_i^* , Q_i^*
- **4 Coupling Laws:** Kirchoff and Ohm: $Y_{ij} = G_{ij} + jB_{ij}$

- **1 Line Characteristics:** $G_{ij}/B_{ij} = \text{const.}$ (today, lossless $G_{ij} = 0$)
- **6 Decoupling:** $P_i \approx P_i(\theta)$ & $Q_i \approx Q_i(E)$ (normal operating conditions)
 - trigonometric active power flow: $P_i(\theta) = \sum_i B_{ij} \sin(\theta_i \theta_j)$
 - quadratic reactive power flow: $Q_i(E) = -\sum_j B_{ij} E_i E_j$

Modeling II: Inverter-interfaced sources

also applies to frequency-responsive loads

Power **inverters** are . . .

- interface between AC grid and DC or variable AC sources
- operated as controllable ideal voltage sources

Assumptions:

- Fast, stable inner/outer loops (voltage/current/impedance)
- Good harmonic filtering
- Balanced 3-phase operation

Modeling II: Inverter-interfaced sources

also applies to frequency-responsive loads

Power **inverters** are . . .

- interface between AC grid and DC or variable AC sources
- operated as controllable ideal voltage sources

$$\omega_i = u_i^{\text{freq}}, \quad \tau_i \dot{E}_i = u_i^{\text{volt}}$$

Assumptions:

- Fast, stable inner/outer loops (voltage/current/impedance)
- Good harmonic filtering
- Balanced 3-phase operation

Frequency Open-Loop

Voltage Open-Loop

Inverter Dynamics $(i \in \mathcal{I})$:

$$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}}$$
 $P_i(heta) = \sum_j B_{ij} \sin(heta_i - heta_j)$

Power Balance $(i \in \mathcal{L})$:

$$0 = P_i^* - \sum\nolimits_j {B_{ij}\sin (\theta_i - \theta_j)}$$

Inverter Dynamics $(i \in \mathcal{I})$:

$$au_i \dot{E}_i = u_i^{ ext{volt}}$$
 $Q_i(E) = -\sum_j B_{ij} E_i E_j$

Power Balance: $(i \in \mathcal{L})$

$$0 = Q_i^* + \sum\nolimits_j B_{ij} E_i E_j$$

- Stabilization: Ensure stable frequency/voltage dynamics
- Balance: Balance supply/demand for variable loads
- Output Description States S

Frequency Open-Loop

Voltage Open-Loop

Inverter Dynamics $(i \in \mathcal{I})$:

$$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}}$$
 $P_i(heta) = \int_j B_{ij} \sin(heta_i - heta_j)$

Power Balance $(i \in \mathcal{L})$:

$$0 = P_i^* - \int_j B_{ij} \sin(\theta_i - \theta_j)$$

Inverter Dynamics $(i \in \mathcal{I})$:

$$au_i \dot{E}_i = u_i^{
m volt}$$
 $Q_i(E) = - \int\limits_j B_{ij} E_i E_j$

Power Balance: $(i \in \mathcal{L})$

$$0 = Q_i^* + \qquad_{j} B_{ij} E_i E_j$$

- **1 Stabilization:** Ensure stable frequency/voltage dynamics
- @ Balance: Balance supply/demand for variable loads
- Output Description States S

Frequency Open-Loop

Voltage Open-Loop

Inverter Dynamics $(i \in \mathcal{I})$:

$$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}}$$
 $P_i(heta) = \int_j B_{ij} \sin(heta_i - heta_j)$

Power Balance $(i \in \mathcal{L})$:

$$0 = P_i^* - \int_j B_{ij} \sin(\theta_i - \theta_j)$$

Inverter Dynamics $(i \in \mathcal{I})$:

$$au_i \dot{E}_i = u_i^{ ext{volt}}$$
 $Q_i(E) = - \int_j B_{ij} E_i E_j$

Power Balance: $(i \in \mathcal{L})$

$$0 = Q_i^* + \qquad_j B_{ij} E_i E_j$$

- **1 Stabilization:** Ensure stable frequency/voltage dynamics
- Balance: Balance supply/demand for variable loads
- Output Description States S

Frequency Open-Loop

Voltage Open-Loop

Inverter Dynamics $(i \in \mathcal{I})$:

$$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}}$$
 $P_i(heta) = \int_{j} B_{ij} \sin(heta_i - heta_j)$

Power Balance $(i \in \mathcal{L})$:

$$0 = P_i^* - \int_j B_{ij} \sin(\theta_i - \theta_j)$$

Inverter Dynamics $(i \in \mathcal{I})$:

$$au_i \dot{E}_i = u_i^{ ext{volt}}$$
 $Q_i(E) = - \int\limits_{j} B_{ij} E_i E_j$

Power Balance: $(i \in \mathcal{L})$

$$0 = Q_i^* + \bigcup_j B_{ij} E_i E_j$$

- **1 Stabilization:** Ensure stable frequency/voltage dynamics
- Balance: Balance supply/demand for variable loads
- Output Description of the Company of the Company

Primary Droop Control

"Grid-forming" decentralized control

Key Idea: emulate generator speed & AVR control

Primary Droop Control

"Grid-forming" decentralized control

Key Idea: emulate generator speed & AVR control

Frequency Droop Control

$$\omega_i = \omega^* - m_i P_i(\theta)$$

$$\tau_i \dot{E}_i = -(E_i - E^*) - n_i Q_i(E)$$

Primary Droop Control

"Grid-forming" decentralized control

Key Idea: emulate generator speed & AVR control

Frequency Droop Control

Quad. Voltage Droop Control

$$\omega_i = \omega^* - m_i P_i(\theta)$$

$$\tau_i \dot{E}_i = -\frac{E_i(E_i - E^*) - n_i Q_i(E)$$

Frequency	Droop	Control
-----------	-------	----------------

$$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$$

$$0 = Q_i^* + \sum_j B_{ij} E_i E_j$$

Frequency Droop Control

$$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$$

$$0 = Q_i^* + \sum_j B_{ij} E_i E_j$$

Frequency Droop Control

$$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$$

$$0 = Q_i^* + \sum_j B_{ij} E_i E_j$$

Frequency Droop Control

$$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$$

$$0 = Q_i^* + \sum_j B_{ij} E_i E_j$$

Droop Control Stability Conditions

Frequency Droop Control

Voltage Droop Control

$$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$$
$$\dot{\theta}_i = -m_i \sum_i B_{ij} \sin(\theta_i - \theta_j)$$

$$0 = \mathbf{Q}_i + \sum_j B_{ij} E_i E_j$$

$$i \dot{E}_i = -E_i (E_i - E^*) + n_i \sum_j B_{ij} E_i E_j$$

Theorem: Frequency Stability (JWSP, FD, & FB '12)

 $\exists !$ loc. exp. stable angle equilibrium θ_{eq} iff

$$rac{(A^\dagger P)_{ij}}{B_{ij}} < 1$$

for all edges (i, j) of microgrid

(JWSP, FD, & FB '15) ∃! loc. exp. stable voltage

equilibrium point $E_{\rm eq}$ if

$$\frac{1}{(E^*)^2}(B_{LL}Q_L)_i < 1$$

for all load nodes i of microgrid

Tight and Suffi

Necessary and Sufficient

Droop Control Stability Conditions

Frequency Droop Control

Voltage Droop Control

$$0 = P_i^* - \int_j B_{ij} \sin(\theta_i - \theta_j)$$
$$\dot{\theta}_i = -m_i \int_j B_{ij} \sin(\theta_i - \theta_j)$$

$$0 = Q_i^* + \int_j B_{ij} E_i E_j$$

$$\tau_i \dot{E}_i = -E_i (E_i - E^*) + n_i \int_j B_{ij} E_i E_j$$

Theorem: Frequency Stability

(JWSP, FD, & FB '12)

 $\exists !$ loc. exp. stable angle equilibrium θ_{eq} iff

$$\frac{(A^{\dagger}P)_{ij}}{B_{ii}} < 1$$

for all edges (i, j) of microgrid.

Theorem: Voltage Stability (JWSP, FD, & FB '15) \exists ! loc. exp. stable voltage equilibrium point E_{eq} if

$$\frac{4}{(E^*)^2}(B_{LL}^{-1}Q_L)_i < 1$$

for all load nodes *i* of microgrid.

Tight and Suffic

Necessary and Sufficient

Droop Control Stability Conditions

Frequency Droop Control

Voltage Droop Control

$$0 = P_i^* - \int_j B_{ij} \sin(\theta_i - \theta_j)$$

 $\dot{\theta}_i = -m_i \int_i B_{ij} \sin(\theta_i - \theta_j)$

$$0 = Q_i^* + \int_j B_{ij} E_i E_j$$

$$\tau_i \dot{E}_i = -E_i (E_i - E^*) + n_i \int_j B_{ij} E_i E_j$$

Theorem: Frequency Stability

(JWSP, FD, & FB '12)

 $\exists !$ loc. exp. stable angle equilibrium θ_{eq} iff

$$\frac{(A^{\dagger}P)_{ij}}{B_{ii}} < 1$$

for all edges (i, j) of microgrid.

Theorem: Voltage Stability (JWSP, FD, & FB '15) \exists ! loc. exp. stable voltage equilibrium point E_{eq} if

$$\frac{4}{(E^*)^2}(B_{LL}^{-1}Q_L)_i < 1$$

for all load nodes *i* of microgrid.

Tight and Sufficient

Necessary and Sufficient

Droop Control Stability Conditions

Frequency Droop Control

Voltage Droop Control

$$0 = P_i^* - \int_j B_{ij} \sin(\theta_i - \theta_j)$$

 $\dot{\theta}_i = -m_i \int_j B_{ij} \sin(\theta_i - \theta_j)$

$$0 = Q_i^* + \int_j B_{ij} E_i E_j$$

$$\tau_i \dot{E}_i = -E_i (E_i - E^*) + n_i \int_j B_{ij} E_i E_j$$

Theorem: Frequency Stability

(JWSP, FD, & FB '12)

 $\exists !$ loc. exp. stable angle equilibrium θ_{eq} iff

$$\frac{(A^{\dagger}P)_{ij}}{B_{ij}} < 1$$

for all edges (i, j) of microgrid.

Theorem: Voltage Stability

(JWSP, FD, & FB '15)

 \exists ! loc. exp. stable voltage equilibrium point E_{eq} if

$$\frac{4}{(E^*)^2}(B_{LL}^{-1}Q_L)_i < 1$$

for all load nodes i of microgrid.

Tight and Sufficient

Necessary and Sufficient

Open Primary Control Problems

- Coupled equilibrium and stability analysis
- ② New controllers for $G_{ij}/B_{ij} \neq \text{constant}$
- Basins of attraction
- Limits of decentralized control

minimize the total cost of generation

minimize the total cost of generation

minimize $\theta \in \mathbb{T}^n$	$f(\theta) = rac{1}{2} _{ ext{inverters}} lpha_i [P_i(heta)]^2$
subject to	
load power balance:	$0=P_i^*-P_i(\theta)$
branch flow constraints:	$ heta_i - heta_j \le \gamma_{ij} < \pi/2$
inverter injection constraints:	$P_i(heta) \in \left[0, \overline{P}_i ight]$

Variations: general strictly convex & differentiable cost.

minimize the total cost of generation

$$\begin{aligned} & \text{minimize }_{\theta \in \mathbb{T}^n} & & f(\theta) = \frac{1}{2} & & \alpha_i [P_i(\theta)]^2 \\ & \text{subject to} & & 0 = P_i^* - P_i(\theta) \\ & \text{branch flow constraints:} & & |\theta_i - \theta_j| \leq \gamma_{ij} < \pi/2 \\ & \text{inverter injection constraints:} & & P_i(\theta) \in [0, \overline{P}_i] \end{aligned}$$

Variations: general strictly convex & differentiable cost.

Conventional: Offline, Centralized, Model & Load Forecast

minimize the total cost of generation

$$\begin{aligned} & \text{minimize }_{\theta \in \mathbb{T}^n} & & f(\theta) = \frac{1}{2} & & \alpha_i [P_i(\theta)]^2 \\ & \text{subject to} & & 0 = P_i^* - P_i(\theta) \\ & \text{branch flow constraints:} & & |\theta_i - \theta_j| \leq \gamma_{ij} < \pi/2 \\ & \text{inverter injection constraints:} & & P_i(\theta) \in [0, \overline{P}_i] \end{aligned}$$

Variations: general strictly convex & differentiable cost.

Conventional: Offline, Centralized, Model & Load Forecast

Plug-and-play Microgrid: On-line, decentralized, no model, no forecasts

minimize the total cost of generation

minimize
$$_{\theta \in \mathbb{T}^n}$$
 $f(\theta) = \frac{1}{2}$ $_{\text{inverters}} \alpha_i [P_i(\theta)]^2$ subject to load power balance: $0 = P_i^* - P_i(\theta)$ branch flow constraints: $|\theta_i - \theta_i| \leq \gamma_{ii} < \pi/2$

Variations: general strictly convex & differentiable cost.

inverter injection constraints:

Conventional: Offline, Centralized, Model & Load Forecast

Plug-and-play Microgrid: On-line, decentralized, no model, no forecasts

Result: Droop = **decentralized primal algorithm** for this problem.

 $P_i(\theta) \in [0, \overline{P}_i]$

Problem: steady-state frequency deviation $(\omega_{ss} = \omega^*)$

Problem: steady-state frequency deviation ($\omega_{ss} = \omega^*$)

Solution: integral control on frequency error

Interconnected Systems

Isolated Systems

 Centralized automatic generation control (AGC)

• **Decentralized** PI control (isochronous mode)

Problem: steady-state frequency deviation $(\omega_{ss} = \omega^*)$

Problem: steady-state frequency deviation $(\omega_{ss} = \omega^*)$

Problem: steady-state frequency deviation ($\omega_{ss} = \omega^*$)

Problem: steady-state frequency deviation $(\omega_{\rm ss} = \omega^*)$

Problem: steady-state frequency deviation $(\omega_{ss} = \omega^*)$

Solution: integral control on frequency error

What about **distributed** secondary control strategies?

$$\omega_i = \omega^* - m_i P_i(\theta) - \Omega_i$$
 $k_i \dot{\Omega}_i = (\omega_i - \omega^*) - a_{ij} \cdot (\Omega_i - \Omega_j)$
 $j \subseteq \text{inverters}$

- 1 no tuning, no model dependence
- 2 weak comm. requirements
- (share burden of sec. control

Simple & Intuitive

Theorem: Stability of DAPI

JWSP, FD, & FB, [13]

DAPI-Controlled System Stable

Droop-Controlled System Stable

$$\omega_i = \omega^* - m_i P_i(\theta) - \Omega_i$$
 $k_i \dot{\Omega}_i = (\omega_i - \omega^*) - a_{ij} \cdot (\Omega_i - \Omega_j)$
 $j \subseteq \text{inverters}$

- 1 no tuning, no model dependence
- 2 weak comm. requirements
- (share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI [JWSP, FD, & FB, '13]

DAPI-Controlled System Stable

Droop-Controlled System Stable

$$\omega_i = \omega^* - m_i P_i(\theta) - \Omega_i$$
 $k_i \dot{\Omega}_i = (\omega_i - \omega^*) - a_{ij} \cdot (\Omega_i - \Omega_j)$
 $j \subseteq \text{inverters}$

- 1 no tuning, no model dependence
- 2 weak comm. requirements
- 3 maintains load sharing (share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI [JWSP, FD, & FB, '13]

DAPI-Controlled System Stable

Droop-Controlled System Stable

$$\omega_i = \omega^* - m_i P_i(\theta) - \Omega_i$$
 $k_i \dot{\Omega}_i = (\omega_i - \omega^*) - a_{ij} \cdot (\Omega_i - \Omega_j)$
 $j \subseteq \text{inverters}$

- 1 no tuning, no model dependence
- 2 weak comm. requirements
- maintains load sharing (share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI [JWSP, FD, & FB, '13]

DAPI-Controlled System Stable

Droop-Controlled System Stable

$$\omega_i = \omega^* - m_i P_i(\theta) - \Omega_i$$
 $k_i \dot{\Omega}_i = (\omega_i - \omega^*) - a_{ij} \cdot (\Omega_i - \Omega_j)$
 $j \subseteq \text{inverters}$

- 1 no tuning, no model dependence
- 2 weak comm. requirements
- maintains load sharing (share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI [JWSP, FD, & FB, '13]

DAPI-Controlled System Stable

Droop-Controlled System Stable

Problem: steady-state voltage deviations $(E_i = E_i^*)$

Goals: Voltage regulation $E_i o E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are fundamentally conflicting.

We propose a heuristic compromise.

$$\tau_{i}\dot{E}_{i} = -(E_{i} - E_{i}^{*}) - n_{i}Q_{i}(E) - e_{i}$$

$$\kappa_{i}\dot{e}_{i} = \beta_{i}(E_{i} - E_{i}^{*}) - by \cdot \left(\frac{Q_{i}}{Q_{i}^{*}} - \frac{Q_{j}}{Q_{i}^{*}}\right)$$

- ① $\beta_i \gg \sum_i b_{ij} \Longrightarrow \text{voltage regulation}$
- 2 $\beta_i \ll \sum_i b_{ij} \Longrightarrow Q$ -Sharing

Problem: steady-state voltage deviations $(E_i = E_i^*)$

Goals: Voltage regulation $E_i o E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are fundamentally conflicting.

We propose a heuristic compromise.

$$\tau_{i}\dot{E}_{i} = -(E_{i} - E_{i}^{*}) - n_{i}Q_{i}(E) - \mathbf{e}_{i}$$

$$\kappa_{i}\dot{\mathbf{e}}_{i} = \beta_{i}(E_{i} - E_{i}^{*}) - b_{ij} - \frac{Q_{i}}{Q_{i}^{*}} - \frac{Q_{i}}{Q_{i}^{*}}$$

$$j \subseteq \text{inverters}$$

- ① $\beta_i \gg \sum_i b_{ij} \Longrightarrow \text{voltage regulation}$
- 2 $\beta_i \ll \sum_i b_{ij} \Longrightarrow Q$ -Sharing

Problem: steady-state voltage deviations $(E_i = E_i^*)$

Goals: Voltage regulation $E_i o E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_j^*$

Bad News: These goals are fundamentally conflicting.

We propose a heuristic compromise.

$$\tau_{i}\dot{E}_{i} = -(E_{i} - E_{i}^{*}) - n_{i}Q_{i}(E) - \mathbf{e}_{i}$$

$$\kappa_{i}\dot{\mathbf{e}}_{i} = \beta_{i}(E_{i} - E_{i}^{*}) - b_{ij} - \frac{Q_{i}}{Q_{i}^{*}} - \frac{Q_{i}}{Q_{i}^{*}}$$

$$j \subseteq \text{inverters}$$

- 1 $\beta_i \gg \sum_i b_{ij} \Longrightarrow \text{voltage regulation}$
- 2 $\beta_i \ll \sum_i b_{ij} \Longrightarrow Q$ -Sharing

Problem: steady-state voltage deviations $(E_i = E_i^*)$

Goals: Voltage regulation $E_i o E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are fundamentally conflicting.

We propose a **heuristic compromise**.

$$\tau_{i}\dot{E}_{i} = -(E_{i} - E_{i}^{*}) - n_{i}Q_{i}(E) - e_{i}$$

$$\kappa_{i}\dot{e}_{i} = \beta_{i}(E_{i} - E_{i}^{*}) - b_{ij} \cdot \frac{Q_{i}}{Q_{i}^{*}} - \frac{Q_{j}}{Q_{j}^{*}}$$

$$j \subseteq \text{inverters}$$

- 1 $\beta_i \gg \sum_i b_{ij} \Longrightarrow \text{voltage regulation}$
- 2 $\beta_i \ll \sum_i b_{ij} \Longrightarrow Q$ -Sharing

Problem: steady-state voltage deviations $(E_i = E_i^*)$

Goals: Voltage regulation $E_i o E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are fundamentally conflicting.

We propose a **heuristic compromise**.

$$\tau_{i}\dot{E}_{i} = -(E_{i} - E_{i}^{*}) - n_{i}Q_{i}(E) - e_{i}$$

$$\kappa_{i}\dot{e}_{i} = \beta_{i}(E_{i} - E_{i}^{*}) - b_{ij} \cdot \frac{Q_{i}}{Q_{i}^{*}} - \frac{Q_{j}}{Q_{j}^{*}}$$

$$j \subseteq \text{inverters}$$

- **1** $\beta_i \gg \sum_i b_{ij} \Longrightarrow \text{voltage regulation}$

From Hierarchical Control to DAPI Control

flat hierarchy, distributed, no time-scale separations, & model-free

From Hierarchical Control to DAPI Control

flat hierarchy, distributed, no time-scale separations, & model-free

Experimental Validation of DAPI Control

Experiments @ Aalborg University Intelligent Microgrid Laboratory

Experimental Validation of DAPI Control

Experiments @ Aalborg University Intelligent Microgrid Laboratory

- t < 7: Droop Control
- 2 t = 7: DAPI Control
- t = 22: Remove Load 2
- \bullet t = 36: Attach Load 2

Experimental Validation of DAPI Control

t = 36: Attach Load 2

Experiments @ Aalborg University Intelligent Microgrid Laboratory

DAPI Activated

Power Sharing

Summary

Distributed Inverter Control

- Primary control stability
- Distributed PI controllers
- Primary/tertiary connections
- Extensive validation

Future Work

- More detailed models
- More systematic designs
- \mathcal{H}_2 performance
- Monitoring ←⇒ Feedback

Acknowledgements

Florian Dörfler

Francesco Bullo

Qobad Shafiee Josep Guerrero

Marco Todescato

Basilio Gentile

Ruggero Carli

21/22

Question Time

http://engr.ucsb.edu/~johnwsimpsonporco/ jwsimpson@uwaterloo.ca

supplementary slides

An incomplete literature review of a busy field

ntwk with unknown disturbances \cup integral control \cup distributed averaging

- all-to-all source frequency & injection averaging [Q. Shafiee, J. Vasquez, & J. Guerrero, '13] & [H. Liang, B. Choi, W. Zhuang, & X. Shen, '13] & [M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, '12]
- optimality w.r.t. economic dispatch [E. Mallada & S. Low, '13] & [M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, '13] & [X. Zhang and A. Papachristodoulou, '13] & [N. Li, L. Chen, C. Zhao & S. Low '13]
- ratio consensus & dispatch [S.T. Cady, A. Garcia-Dominguez, & C.N. Hadjicostis, '13]
- load balancing in Port-Hamiltonian networks [J. Wei & A. Van der Schaft, '13]
- passivity-based network cooperation and flow optimization [M. Bürger, D. Zelazo, & F. Allgöwer, '13, M. Bürger & C. de Persis '13, He Bai & S.Y. Shafi '13]
- distributed PI avg optimization [G. Droge, H. Kawashima, & M. Egerstedt, '13]
- PI avg consensus [R. Freeman, P. Yang, & K. Lynch '06] & [M. Zhu & S. Martinez '10]
- decentralized "practical" integral control [N. Ainsworth & S. Grijalva, '13]

DAPI Voltage Control – Performance [TIE '15]

$$\tau_i \dot{E}_i = -(E_i - E^*) - n_i Q_i(E) - e_i$$

$$\kappa_i \dot{e}_i = \beta_i (E_i - E_i^*) - b_{ij} \cdot \frac{Q_i}{Q_i^*} - \frac{Q_j}{Q_j^*}$$

$$j \subseteq \text{inverters}$$

